Abstract

Magnetogasdynamic (MGD) flows with detonation waves and combustion fronts have attracted more and more attention in recent years. Intensive heat supply assures such a significant increase in the temperature and pressure behind the heat liberation fronts that the gaseous combustion products become conductive so that the flow map in the electric and magnetic fields can vary substantially as compared with ordinary gasdynamics. In the case of finite gas conductivity, when the magnetic Reynolds numbers Rm are low, the asymptotic laws of detonation wave propagation which either go over into the Chapman-Jouguet (CJ) mode (in a number of cases at a finite distance from the initiation source) or remain overcompressed, have been studied [1]. Stationary flow modes behind detonation waves have been investigated in [2] and the problem of the detonation wave originating at the closed end of the tube emerging in the stationary mode in crossed homogeneous magnetic and electric fields has been examined. Results are presented in this paper of an investigation of one-dimensional self-similar flows caused by piston motion in a hot gas mixture in which a detonation wave or combustion front is propagated. The motion is realized in external electric and magnetic fields which exert a substantial effect on the flow of the conductive combustion products. Domains of application of the governing parameters in which the various flow modes are realized are found by using a qualitative and numerical analysis. The results obtained are used to solve problems about the hypersonic gas flow around a thin wedge in an axial magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.