Abstract
Hidden Markov Models (HMM) have proven to be useful in a variety of real world applications where considerations for uncertainty are crucial. Such an advantage can be more leveraged if HMM can be scaled up to deal with complex problems. In this paper, we introduce, analyze and demonstrate Self-Similar Layered HMM (SSLHMM), for a certain group of complex problems which show self-similar property, and exploit this property to reduce the complexity of model construction. We show how the embedded knowledge of selfsimilar structure can be used to reduce the complexity of learning and increase the accuracy of the learned model. Moreover, we introduce three different types of self-similarity in SSLHMM, and investigate their performance in the context of synthetic data and real-world network databases. We show that SSLHMM has several advantages comparing to conventional HMM techniques and it is more efficient and accurate than one-step, flat method for model construction.KeywordsHide Markov ModelState Transition MatrixPartial Observable Markov Decision ProcessHide Markov Model ModelPacket RateThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.