Abstract

The self-similar crack expansion method is developed to calculate stress intensity factors for three-dimensional cracks in an infinite medium or semi-infinite medium by the boundary integral element technique. With this method, the stress intensity factors at crack tips are determined by calculating the crack-opening displacements over the crack surface, and the crack expansion rate, which is related to the crack energy release rate, is estimated by using a technique based on self-similar (virtual) crack extension. For elements on the crack surface, regular integrals and singular integrals are evaluated based on closed-form expressions, which improves the accuracy. Examples show that this method yields very accurate results for stress intensity factors of penny-shaped cracks and elliptical cracks in the full space, with errors of less than one percent as compared with exact solutions. The stress intensity factors of subsurface cracks are in good agreement with other numerical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.