Abstract

Self-sensing and interfacial evaluation were investigated with different dispersion solvents for single carbon fiber/carbon nanotube (CNT)-epoxy composites by electro-micromechanical technique and acoustic emission (AE) under loading/subsequent unloading. The optimized dispersion procedure was set up to obtain improved mechanical and electrical properties. Apparent modulus and electrical contact resistivity for CNT-epoxy composites were correlated with different dispersion solvents for CNT. CNT-epoxy composites using good dispersion solvents exhibited a higher apparent modulus because of better stress transferring effects due to the relatively uniform dispersion of CNT in epoxy and enhanced interfacial adhesion between CNT and the epoxy matrix. However, good solvents exhibited a higher apparent modulus but lower thermodynamic work of adhesion, W a for single carbon microfiber/CNT-epoxy composite. It is attributed to the fact that hydrophobic behavior with high advanced contact angle was observed for CNT-epoxy in the good solvent, which might not be compatible well with the carbon microfiber. Damage sensing was also detected simultaneously using AE combined with electrical resistance measurement. Electrical resistivity increased stepwise with progressing fiber fracture due to the decrease in electrical contact by the CNT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.