Abstract

A novel remotely operated underwater vehicle-a hybrid remotely operated underwater vehicle (HROV) capable of working to the full ocean depth has been developed. The battery powered vehicle operates in two modes. For broad-area survey, the vehicle can operate as an autonomous underwater vehicle (AUV) capable of mapping the sea floor with sonars and cameras. For close up imaging and sampling, the vehicle can operate as a remotely operated underwater vehicle (ROV) employing a optic fiber tether for real-time telemetry of data and video to its operators on a surface ship. In order for the vehicle to achieve a certain survivability and reliability level, a self-repairing control system (SRCS) has been designed. This paper presents the two basic technologies in SRCS: fault diagnosis and isolation (FDI) and reconfigurable control. For FDI, a model-based hierarchical fault diagnosis system is designed for the HROV. Then, control strategies which reconfigure the control system at intervals according to information from the FDI system are presented. Combining the two technologies, we obtained the fundamental frame of SRCS for the HROV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.