Abstract

AbstractSolar‐driven interfacial evaporation has emerged as an innovative and sustainable technology for efficient, clean water production. Real‐world applications depend on new classes of low‐cost, lightweight, and robust materials that can be integrated into one monolithic device, which withstands a variety of realistic conditions on open water. Self‐repairing building blocks are highly desired to prevent permanent failures, recover original functions and maintain the lifetime of interfacial steam generators, although related studies are scarce to date. For the first time, a monolithic, durable, and self‐floating interfacial steam generator with well‐defined structures is demonstrated by integrating self‐healing hydrogels through facile processes in surface modulation and device fabrication. High and stable water evaporation rates over 2.0 kg m−2 h−1 are attained under 1 sun on both fresh water and brine with a broad range of salinity (36–210 g kg−1). The solar evaporation and desalination performance are among the best‐performing interfacial steam generators and surpass a majority of devices that are constructed by composite polymers as structural components. This study provides a perspective and highlights the future opportunities in self‐healing and damage‐tolerant materials that can simultaneously improve the performance, durability, and lifetime of interfacial steam generators in real‐world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.