Abstract
Silica aerogels have attracted significant interest in thermal insulation applications because of their low thermal conductivity and great thermal stability, however, their fragility has limited their application in every-day products. Herein, a self-reinforcing strategy to design silica nanofibrous aerogels (SNFAs) is proposed using electrospun SiO2 nanofibers as the matrix and a silica sol as a high-temperature nanoglue. Adopting this approach results in a strong and compatible interfacial interaction between the SiO2 fibers and the silica sol, which results in the SNFAs exhibiting high-temperature-resistant and tunable mechanical properties from elastic to rigid. Furthermore, additional properties such as low density, high thermal insulation performance, and fire-resistance are still retained. The self-reinforcing method described herein may be extended to numerous other new ceramic aerogels that require robust mechanical properties and high-temperature resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.