Abstract
In the present paper, different self‐reinforced polypropylene (PP) composites based on low‐cost commercial woven (w) and non‐woven (nw) fabrics were obtained. Hot compaction (HC) and film stacking (FS) followed by compression molding were used to prepared the composites. The fracture and failure behavior of the different materials was determined under different testing conditions through quasi‐static uniaxial tensile tests, Izod impact experiments and by means of fracture mechanics tests on mode I double‐edge deeply notched tensile specimens. In the case of the composite obtained by film stacking + compression molding (rPP/nw/w‐FS) and the hot‐compacted composite (nw/w‐HC) containing simultaneously woven and non‐woven fabrics, the acoustic emission technique was applied in situ in the tensile tests to determine their consolidation quality and to identify the failure mechanisms responsible for their fracture behavior. It was observed that both composites exhibited relatively similar high consolidation quality. However, the hot‐compacted composite presented a more uniform distribution of failure mechanisms (debonding and fiber fracture) than the film‐stacked composite. The hot‐compacted composite containing both types of reinforcements exhibited the best combination of mechanical (tensile, impact, and fracture) properties. Therefore, this composite appeared as the most promising for structural applications among the different composites investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.