Abstract

Self-pulsations in asymmetric external cavity semiconductor lasers are studied experimentally and are analyzed using improved rate equations which include multiple reflections. These equations are valid for arbitrary levels of coherent external optical feedback. The dependence of self-pulsation frequencies on injection current, external mirror tilt angle and reflectivity, and external cavity length is explained by small-signal analysis of the rate equations. By numerical integration of the rate equations, self-pulsations are demonstrated theoretically and resonant enhancement of intensity noise is shown to occur when the self-pulsation frequency is an integer fraction of the external cavity resonance frequency.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call