Abstract
A soluble form of homologous restriction factor (HRF) has been isolated from the cytoplasmic granules of human large granular lymphocytes that were cultured in the presence of recombinant interleukin 2 for 2-3 weeks. The granule-derived protein (approximately 65 kDa) is soluble in detergent-free solution and reacts with antibody produced to membrane HRF. HRF was first described as a 65-kDa membrane protein of human erythrocytes capable of inhibiting the formation of transmembrane channels by the membrane attack complex of complement. It has also been isolated from activated human lymphocytes and shown to confer upon these cells relative resistance to lysis by the membrane attack complex and by the complement component C9-related protein of human cytotoxic lymphocytes. The soluble HRF of lymphocyte granules inhibits reactive lysis of erythrocytes by the membrane attack complex of human complement. It was also found to be a potent inhibitor of (i) the cytolytic activity of the C9-related protein of human cytotoxic lymphocytes, (ii) human large granular lymphocyte cytotoxicity, and (iii) the cytotoxic activity of human CD8+ lymphocytes obtained by cell sorting from recombinant interleukin 2-activated peripheral blood mononuclear cells. It is proposed that granule-derived soluble HRF and cell surface-membrane-bound HRF are involved in the mechanism of self-protection of killer lymphocytes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.