Abstract

The identification of efficient techniques for the fabrication of Ultra High Temperature Ceramics (UHTCs) is very crucial in view of their rapid and wider development. Along these lines, the use of the self-propagating high-temperature synthesis (SHS) technique in combination with the SPS technology is examined in this chapter for the obtainment of fully dense MB2-SiC and MB2-MC-SiC (M=Zr, Hf, Ta) ceramics. The starting reactants are first processed by SHS to successfully form the desired composites. The resulting powders are subsequently consolidated by spark-plasma sintering (SPS). Bulk products with relative densities = 96% can be obtained within 30 minutes, when the dwell temperature is 1800 °C and P=20 MPa. Hardness, fracture toughness, and oxidation resistance of the obtained dense bodies are comparable to, and in some cases superior than, those reported for analogous products synthesized using alternative routes. Possible future developments of this approach with the final purpose of obtaining whiskers/fibers reinforced UHTCs are finally discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.