Abstract
Piezoelectric Vibration converters are nowadays gaining importance for supplying low-powered sensor nodes and wearable electronic devices. Energy management interfaces are thereby needed to ensure voltage compatibility between the harvester element and the electric load. To improve power extraction ability, resonant interfaces such as Parallel Synchronized Switch Harvesting on Inductor (P-SSHI) have been proposed. The main challenges for designing this type of energy management circuits are to realise self-powered solutions and increase the energy efficiency and adaptability of the interface for low-power operation modes corresponding to low frequencies and irregular vibration mechanical energy sources. In this work, a novel Self-Powered (SP P-SSHI) energy management circuit is proposed which is able to harvest energy from piezoelectric converters at low frequencies and irregular chock like footstep input excitations. It has a good power extraction ability and is adaptable for different storage capacitors and loads. As a proof of concept, a piezoelectric shoe insole with six integrated parallel piezoelectric sensors (PEts) was designed and implemented to validate the performance of the energy management interface circuit. Under a vibration excitation of 1 Hz corresponding to a (moderate walking speed), the maximum reached efficiency and power of the proposed interface is 83.02% and 3.6 mW respectively for the designed insole, a 10 kΩ resistive load and a 10 μF storage capacitor. The enhanced SP-PSSHI circuit was validated to charge a 10 μF capacitor to 6 V in 3.94 s and a 1 mF capacitor to 3.2 V in 27.64 s. The proposed energy management interface has a cold start-up ability and was also validated to charge a (65 mAh, 3.1 V) maganese dioxide coin cell Lithium battery (ML 2032), demonstrating the ability of the proposed wearable piezoelectric energy harvesting system to provide an autonomous power supply for wearable wireless sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.