Abstract
In this paper we generalize the construction of binary self-orthogonal codes obtained from weakly self-orthogonal designs described in Tonchev (J Combinat Theory Ser A 52:197-205, 1989) in order to obtain self-orthogonal codes over an arbitrary field. We extend construction self-orthogonal codes from orbit matrices of self-orthogonal designs and weakly self-orthogonal 1-designs such that block size is odd and block intersection numbers are even described in Crnković (Adv Math Commun 12:607–628, 2018). Also, we generalize mentioned construction in order to obtain self-orthogonal codes over an arbitrary field. We construct weakly self-orthogonal designs invariant under an action of Mathieu group \(M_{11}\) and, from them, binary self-orthogonal codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applicable Algebra in Engineering, Communication and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.