Abstract

Real-time approximators for continuous-time dynamical systems with many inputs are presented. These approximators employ a novel self-organizing radial basis function (RBF) network, which varies its structure dynamically to keep the prescribed approximation accuracy. The RBFs can be added or removed online in order to achieve the appropriate network complexity for the real-time approximation of the dynamical systems and to maintain the overall computational efficiency. The performance of this variable structure RBF network approximator with both Gaussian RBF (GRBF) and raised-cosine RBF (RCRBF) is analyzed. The compact support of RCRBF enables faster training and easier output evaluation of the network than that of the network with GRBF. The proposed real-time self-organizing RBF network approximator is then employed to approximate both linear and nonlinear dynamical systems to illustrate the effectiveness of our proposed approximation scheme, especially for higher order dynamical systems. The uniform ultimate boundedness of the approximation error is proved using the second method of Lyapunov.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.