Abstract
Earth Observation (EO) Data Cubes infrastructures model analysis-ready data generated from remote sensing images as multidimensional cubes (space, time and properties), especially for satellite image time series analysis. These infrastructures take advantage of big data technologies and methods to store, process and analyze the big amount of Earth observation satellite images freely available nowadays. Recently, EO Data Cubes infrastructures and satellite image time series analysis have brought new opportunities and challenges for the Land Use and Cover Change (LUCC) monitoring over large areas. LUCC have caused a great impact on tropical ecosystems, increasing global greenhouse gases emissions and reducing the planet’s biodiversity. This paper presents the utility of Self-Organizing Maps (SOM) neural network method in the process to extract LUCC information from EO Data Cubes infrastructures, using image time series analysis. Most classification techniques to create LUCC maps from satellite image time series are based on supervised learning methods. In this context, SOM is used as a method to assess land use and cover samples and to evaluate which spectral bands and vegetation indexes are best suitable for the separability of land use and cover classes. A case study is described in this work and shows the potential of SOM in this application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.