Abstract
Composite structures exhibiting a periodic arrangement of building blocks can be found in natural systems at different length scales. Recreating such systems in artificial composites using the principles of self-assembly has been a great challenge, especially for 1D microscale systems. Here, we present a purposely designed composite material consisting of gold nanoparticles and a nematic liquid crystal matrix that has the ability to self-create a periodic structure in the form of a one-dimensional photonic lattice through a phase separation process occurring in a confined space. Our strategy is based on the use of a thermoswitchable medium that reversibly and quickly responds to both heating and cooling. We find that the period of the structure is strongly related to the size of the confining space. We believe that our findings will allow us to not only better understand the phase separation process in multicomponent soft/colloid mixtures with useful optical properties but also improve our understanding of the precise assembly of advanced materials into one-dimensional periodic systems, with prospective applications in future photonic technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.