Abstract

Cavities formed by proteins have been utilized as the reaction chamber for the fabrication of a range of inorganic nanoparticles, providing control of the size of particles by limiting growth and preventing agglomeration. In crystal form, proteins construct molecular arrays that can provide regularly arranged sites for nanoparticles. Here we report the fabrication of nanometric iron and indium particles using ferritin, an iron-storage protein. The indium nanoparticles thus formed have uniform spherical shape with diameter of 6.6 +/- 0.5 nm, while the iron nanoparticles are somewhat irregular in shape (5.8 +/- 1.0 nm). Regular two-dimensional arrays of these nanoparticles are successfully produced by crystallizing ferritin molecules on a water-air interface using the denatured protein film method. The lattice constant of these nanoparticle arrays is 13 nm with hexagonal packing, and arrays of more than 1 microm in area can be obtained by transfer onto silicon wafer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.