Abstract

During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise.

Highlights

  • The tools and concepts of complex systems research are increasingly permeating cognitive science and the way we understand the mind and ourselves

  • The complex systems approach to cognitive science seeks to move beyond the formalism of computational theory and information exchange and to place cognition within the broader formalism of dynamical systems [7,8,9]

  • The concept of SOC was initially proposed by Bak, Tang and Wiesenfeld [10] to define certain classes of dynamical systems which have a critical point as an attractor, displaying critical behaviour without any significant ‘tuning’ of the system from the outside

Read more

Summary

Introduction

The tools and concepts of complex systems research (often forged in the realm of physics) are increasingly permeating cognitive science and the way we understand the mind and ourselves. Since early cybernetics [1] and system’s theory [2, 3], what might currently be called the complex systems approach to cognition, has put the emphasis on self-organization, the irreducible non-linearity of cognitive processes and circular causality [4,5,6]. This approach contrasts with some of the classical assumptions behind the computational theory of the mind: modularity, functional decomposition, perception-action dichotomy, agent environment ‘decoupling’ (sharp analytic separation between the dynamics of the agent and the environment), etc. For the complex systems approach to cognitive science SOC is appealing because it allows us to imagine systems that are able to selfregulate coordinated behaviours at different scales in a distributed manner and without a central controller

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.