Abstract

We investigate the surface-enhanced Raman spectroscopy of Ag nanorings antenna in both experiment and simulation. Self-organized Ag nanorings antenna were formed on quartz glass wafers by a simple chemistry reaction without any template. The three-dimensional finite-difference time-domain simulation calculations indicate that the electric field enhancement of Ag nanoring antenna is strongly dependent on the gap distance. A very strong surface plasmon coupling in the gap region of Ag nanoring antenna is observed, whose field intensity is enhanced four times compared to that for Ag nanodomes antenna with the same gap distance. Surface-enhanced Raman scattering (SERS) measurements have shown that the SERS intensity acquired from the Ag nanoring antenna is about 16 times stronger than that obtained from Ag nanodomes antenna. These results pave the way to design plasmonic nanostructures for practical applications that require coupled metallic nanoparticles with enhanced electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call