Abstract

Long-range lateral connections in the primary visual cortex (V1) are known to link neurons with similar orientation preferences, but it is not yet known how color-selective cells are connected. Using a self-organizing model of V1 with natural color image input, we show that realistic color-selective receptive fields, color maps, and orientation maps develop. Connections between orientation-selective cells match previous experimental results, and the model predicts that color-selective cells will primarily connect to other cells with similar chromatic preferences. These findings suggest that a single self-organizing system may underlie the development of orientation selectivity, color selectivity, and lateral connectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call