Abstract

We present a stochastic clustering algorithm which uses pairwise similarity of elements and show how it can be used to address various problems in computer vision, including the low-level image segmentation, mid-level perceptual grouping, and high-level image database organization. The clustering problem is viewed as a graph partitioning problem, where nodes represent data elements and the weights of the edges represent pairwise similarities. We generate samples of cuts in this graph, by using Karger's contraction algorithm (1996), and compute an average cut which provides the basis for our solution to the clustering problem. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. The complexity of our algorithm is very low: O(|E| log/sup 2/ N) for N objects, |E| similarity relations, and a fixed accuracy level. In addition, and without additional computational cost, our algorithm provides a hierarchy of nested partitions. We demonstrate the superiority of our method for image segmentation on a few synthetic and real images, both B&W and color. Our other examples include the concatenation of edges in a cluttered scene (perceptual grouping) and the organization of an image database for the purpose of multiview 3D object recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.