Abstract

Thermosensitive star-shaped eight-arm poly-2-alkyl-2-oxazolines (M = 21,000 g mol−1) was synthesized. The arms were gradient copolymers of 2-ethyl-2-oxazoline (EtOx) and 2-isopropyl-2-oxazoline (iPrOx). The more hydrophilic EtOx units prevailed near the calix[8]arene core. For comparison, model linear gradient copolymer (M = 3800 g mol−1) was investigated. For both polymers, comonomer molar ratio was 1/1. The aqueous solutions of copolymers were studied by light scattering and turbidimetry. Self-organization of linear and star-shaped molecules in solution was different, but the phase separation temperatures for these copolymers coincided. In order to find out the influence of the distribution of EtOx and iPrOx units along the arms on the behavior of star-shaped polyalkyloxazolines, the behavior of investigated stars was compared with that for stars, whose arms was block copolymers poly-2-isopropyl-2-oxazoline and poly-2-ethyl-2-oxazoline. It was shown that the phase separation temperature for gradient copolymer solutions was higher than one for block copolymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.