Abstract
Decentralized reinforcement learning (DRL) has been applied to a number of distributed applications. However, one of the main challenges faced by DRL is its convergence. Previous work has shown that hierarchically organizational control is an effective way of coordinating DRL to improve its speed, quality, and likelihood of convergence. In this paper, we develop a distributed, negotiation-based approach to dynamically forming such hierarchical organizations. To reduce the complexity of coordinating DRL, our self-organization approach groups strongly-interacting learning agents together, whose exploration strategies are coordinated by one supervisor. We formalize this idea by characterizing interactions among agents in a decentralized Markov Decision Process model and defining and analyzing a measure that explicitly captures the strength of such interactions. Experimental results show that our dynamically evolving organizations outperform predefined organizations for coordinating DRL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.