Abstract

The structure and low temperature luminescence properties of compressively strained InGaAs/AlGaAs quantum wire (QWR) arrays grown by low-pressure organometallic chemical vapor deposition on V-grooved substrates are reported. The strain gives rise to quasi-periodic undulations of the wire facets along the wire axis, resulting in ordered chains of quantum dotlike structures. Low-temperature photoluminescence shows efficient emission from the wires with narrow (as low as 9.8 meV) linewidths and relatively high intensities. At high excitation densities, several quasi-one-dimensional QWR subbands appear as a result of bandfilling, presenting virtually no energy shifts (<2 meV), even when several (⩾3) subbands are filled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.