Abstract

We establish a Cramer-type moderate deviation result for self-normalized sums of weakly dependent random variables, where the moment requirement is much weaker than the non-self-normalized counterpart. The range of the moderate deviation is shown to depend on the moment condition and the degree of dependence of the underlying processes. We consider three types of self-normalization: the equal-block scheme, the big-block-small-block scheme and the interlacing scheme. Simulation study shows that the latter can have a better finite-sample performance. Our result is applied to multiple testing and construction of simultaneous confidence intervals for ultra-high dimensional time series mean vectors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call