Abstract
Distributed acoustic sensing (DAS) is an emerging data acquisition technique known for its high sensing density, cost effectiveness, and environmental friendliness, making it a technology with significant future application potential in many fields. However, DAS signals are often contaminated by various types of noise, such as high-frequency, high-amplitude erratic, and horizontal noise, making their processing challenging. Therefore, it is crucial to leverage the physical characteristics of these diverse types of noise in DAS data and effectively attenuate them. In this work, we develop SelfMixed, a novel self-supervised learning method for mixed noise suppression of DAS data. We fully exploit the physical characteristics of different types of noise in DAS data and introduce a physical characteristic-based training strategy. Specifically, we use the [Formula: see text] norm to characterize random noise, the [Formula: see text] norm for erratic noise, and horizontal smoothness and vertical nonsmoothness for horizontal noise. In addition, we use a blind-spot-based training strategy for DAS denoising, relying solely on observed noisy data. To more effectively attenuate horizontal noise, we also introduce a Fourier transform-based parameterization method. By combining self-supervised deep priors with the physical characteristics of mixed DAS noise, our method effectively attenuates complex mixed noise in field DAS data. Extensive experiments on synthetic and field data from various geographic scenarios validate the superiority of SelfMixed over seven state-of-the-art DAS denoising approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.