Abstract

We present a self-learning approach for single image super-resolution (SR), with the ability to preserve high frequency components such as edges in resulting high resolution (HR) images. Given a low-resolution (LR) input image, we construct its image pyramid and produce a super pixel dataset. By extracting context information from the super-pixels, we propose to deploy context-specific contour let transform on them in order to model the relationship (via support vector regression) between the input patches and their associated directional high-frequency responses. These learned models are applied to predict the SR output with satisfactory quality. Unlike prior learning-based SR methods, our approach advances a self-learning technique and does not require the self similarity of image patches within or across image scales. More importantly, we do not need to collect training LR/HR image data in advance and only require a single LR input image. Empirical results verify the effectiveness of our approach, which quantitatively and qualitatively outperforms existing interpolation or learning-based SR methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call