Abstract

Image segmentation and classification are the two main fundamental steps in pattern recognition. To perform medical image segmentation or classification with deep learning models, it requires training on large image dataset with annotation. The dermoscopy images (ISIC archive) considered for this work does not have ground truth information for lesion segmentation. Performing manual labelling on this dataset is time-consuming. To overcome this issue, self-learning annotation scheme was proposed in the two-stage deep learning algorithm. The two-stage deep learning algorithm consists of U-Net segmentation model with the annotation scheme and CNN classifier model. The annotation scheme uses a K-means clustering algorithm along with merging conditions to achieve initial labelling information for training the U-Net model. The classifier models namely ResNet-50 and LeNet-5 were trained and tested on the image dataset without segmentation for comparison and with the U-Net segmentation for implementing the proposed self-learning Artificial Intelligence (AI) framework. The classification results of the proposed AI framework achieved training accuracy of 93.8% and testing accuracy of 82.42% when compared with the two classifier models directly trained on the input images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.