Abstract

An important step for active noise control (ANC) systems to be practical is to develop model independent ANC (MIANC) systems that tolerate parameter variations in sound fields. Reliabilities and stabilities of many MIANC systems depend on results of online system identifications. Parameter errors due to system identifications may threaten closed-loop stabilities of MIANC systems. A self-learning active noise control (SLANC) system is proposed in this study to stabilize and optimize an ANC system in case identified parameters are unreliable. The proposed system uses an objective function to check closed-loop stability. If partial or full value of the objective function exceeds a conservatively preset threshold, a stability threat is detected and the SLANC system will stabilize and optimize the controller without using parameters of sound fields. If the reference signal is available, the SLANC system can be combined with a feedforward controller to generate both destructive interference and active damping in sound fields. The self-learning method is simple and stable for many feedback ANC systems to deal with a worst case discussed in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.