Abstract
The design method of adaptive infinite impulse response (IIR) filter is a challenging problem. Its design principle is to determine the filter parameters by the iteration process of the adaptive algorithm, which is to obtain an optimal model for unknown plant based on minimizing mean square error (MSE). However, many adaptive algorithms cannot adjust the parameters of IIR filter to the minimum MSE. Therefore, a more efficient adaptive optimization algorithm is required to adjust the parameters of IIR filter. In this paper, we propose a selfish herd optimization algorithm based on chaotic strategy (CSHO) and apply it to solving IIR system identification problem. In CSHO, we add a chaotic search strategy, which is a better local optimization strategy. Its function is to search for better candidate solutions around the global optimal solution, which makes the local search of the algorithm more precise and finds out potential global optimal solutions. We use solving IIR system identification problem to verify the effectiveness of CSHO. Ten typical IIR filter models with the same order and reduced order are selected for experiments. The experimental results of CSHO compare with those of bat algorithm (BA), cellular particle swarm optimization and differential evolution (CPSO-DE), firefly algorithm (FFA), hybrid particle swarm optimization and gravitational search algorithm (HPSO-GSA), improved particle swarm optimization (IPSO) and opposition-based harmony search algorithm (OHS), respectively. The experimental results show that CSHO has better optimization accuracy, convergence speed and stability in solving most of the IIR system identification problems. At the same time, it also obtains better optimization parameters and achieves smaller difference between actual output and expected output in test samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.