Abstract

MotivationHigh-throughput conformation capture experiments, such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps are critical in evaluating the reproducibility of replicate experiments and for identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging.ResultsWe present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods.Availability and implementation https://github.com/ucrbioinfo/Selfish

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.