Abstract
This chapter presents a two-stage self-interference (SI) cancellation for full-duplex MIMO communications systems. By exploiting the SI channel sparsity, a compressed-sensing based SI channel estimation technique is developed and used in the first SI cancellation radio-frequency (RF) stage to reduce the SI power prior to the receiver low-noise amplifier (LNA) and the analog-to-digital converter (ADC) to avoid overloading. Subsequently, a subspace-based algorithm is proposed to jointly estimate the coefficients of both the residual SI and intended channels, and transceiver impairments for the second SI cancellation baseband stage to further reduce the residual SI. Unlike other previous works, the intended signal is taken into consideration during the estimation process to reduce the overhead. It is demonstrated that the SI channel coefficients can be perfectly estimated without any knowledge of the intended signal, and only a few training symbols are needed for ambiguity removal in intended-channel estimation. Simulation results show that the proposed algorithms outperform the Least Square (LS) algorithms and offer the remarkable signal-to-residual-SI-and-noise ratio (SINR) approaching the signal-to-noise ratio (SNR).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.