Abstract

Gravitational radiation drives compact binaries through an inspiral phase towards a final coalescence. For binaries with spin, mass quadrupole, and magnetic dipole moments, various contributions add to this process, which is characterized by the rate of increase $df/dt$ of the gravitational wave frequency and the accumulated number $\mathcal{N}$ of gravitational wave cycles. We present here all contributions to $df/dt$ and $\mathcal{N}$ up to the second post-Newtonian order. Among them we give for the first time the contributions due to the self-interaction of individual spins. These are shown to be commensurable with the proper spin-spin contributions for the recently discovered J0737-3039 double pulsar and argued to represent the first corrections to the radiation reaction in the Lense-Thirring approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.