Abstract

Computer simulation has been performed for the interaction between a shock wave and a vortex ring moving toward the wave. The computed density contours are compared with the pattern of shadowgraphs. A remarkable property found in the simulation is that, during the passage of the shock wave over the vortex ring, the part of the wave propagating through the inside of the ring-vortex is intensified spontaneously at a localized region. Maximum pressure occurs inside the vortex and attains a high value, about several times that of the impinging shock for incident Mach numbers of around 1.2 with the vortex translation Mach number 0.60. This is due to a double-step mechanism of intensification within the flow field by the shock-vortex interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call