Abstract
Abstract. Plants with specialized pollination systems frequently exhibit adaptations for self-pollination, and this contradictory situation has been explained in terms of the reproductive assurance function of selfing. In the neotropics, several plant lineages rely on specialized vertebrate pollinators for sexual reproduction, including the highly diverse Bromeliaceae family, which also displays a propensity for selfing. Thus far, the scarce evidence on the role of selfing in bromeliads and in other neotropical plant groups is inconclusive. To provide insights into the evolution and persistence of self-fertilization in the breeding systems of Bromeliaceae, we studied four sympatric epiphytic species from the genus Werauhia (Tillandsioideae) in Costa Rica. We documented their floral biology, pollination ecology and breeding systems. We estimated the contribution of selfing by comparing the reproductive success between emasculated flowers requiring pollinator visits and un-manipulated flowers capable of selfing and exposed to open pollination across two flowering seasons. The studied species displayed specialized pollination by nectar-feeding bats as well as a high selfing ability (auto-fertility index values > 0.53), which was attained by a delayed selfing mechanism. Fruit set from natural cross-pollination was low (<26% in both years) and suggested limited pollinator visitation. In line with this, we found a very low bat visitation to flowers using video-camera recording, from 0 to 0.24 visits per plant per night. On the contrary, the contribution of selfing was comparatively significant since 54-80% of the fruit set from un-manipulated flowers can be attributed to autonomous self-pollination. We concluded that inadequate cross-pollination services diminished the reproductive success of the studied Werauhia, which was compensated for by a delayed selfing mechanism. The low negative effects of inbreeding on seed set and germination likely reinforce the persistence of selfing in this bromeliad group. These results suggest that selfing in bat-pollinated bromeliads may have evolved as a response to pollinator limitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.