Abstract
We show that the self-improving nature of Poincaré estimates persists for domains in rather general measure spaces. We consider both weak type and strong type inequalities, extending techniques of B. Franchi, C. Pérez and R. Wheeden. As an application in spaces of homogeneous type, we derive global Poincaré estimates for a class of domains with rough boundaries that we call ϕ-John domains, and we show that such domains have the requisite properties. This class includes John (or Boman) domains as well as s-John domains. Further applications appear in a companion paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.