Abstract

Transition metal dichalcogenides (TMDCs) have attracted significant attention recently in the context of strong light–matter interaction. To observe strong coupling using these materials, excitons are typically hybridized with resonant photonic modes of stand-alone optical cavities, such as Fabry–Perot microcavities or plasmonic nanoantennas. Here, we show that thick flakes of layered van der Waals TMDCs can themselves serve as low-quality resonators due to their high background permittivity. Optical modes of such “cavities” can in turn hybridize with excitons in the same material. We perform an experimental and theoretical study of such self-hybridization in thick flakes of four common TMDC materials: WS2, WSe2, MoS2, and MoSe2. We observe splitting in reflection and transmission spectra in all four cases and provide angle-resolved dispersion measurements of exciton-polaritons as well as thickness-dependent data. Moreover, we observe significant enhancement and broadening of absorption in thick TMDC multilayers, which can be interpreted in terms of strong light–matter coupling. Remarkably, absorption reaches >50% efficiency across the entire visible spectrum, while simultaneously being weakly dependent on polarization and angle of incidence. Our results thus suggest formation of self-hybridized exciton-polaritons in thick TMDC flakes, which in turn may pave the way toward polaritonic and optoelectronic devices in these simple systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call