Abstract
The self-healing effect of electrochemically deposited CeO2-Ce2O3 films on stainless steel OC404 (SS) in 0.5 mol/L NaCl solution was studied. It was established that the corrosion potential of the steel, after covering it with CeO2-Ce2O3 layer and thermal treatment (i.e. potential of the system CeO2-Ce2O3/SSt.t.), was shifted sharply to a considerably more positive value, while the corrosion current was reduced noticeably. The X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM) analyses on the observed scratched surface area of the system CeO2-Ce2O3/SSt.t., after exposure of investigated specimens to 0.5 mol/L NaCl corrosion media, showed partial accumulation of ceria, as well as remarkable increase in the concentrations of oxides of Al, Cr and Fe, on the mechanically revealed steel surface. On the basis of the obtained results one could conclude that the secondary passive oxide/hydroxide films, formed after a definite time interval of exposure to corrosion media, acted as barriers, hindering the corrosion processes in active zones. A hypothesis was put forward about the mechanism of self-repairing oxide layers on the steel surface and their corrosion protection effect respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.