Abstract

Conductive hydrogels have attached considerable attention due to their good stretchability, excellent conductivity when they are applied in soft electronics. However, to fabricate a flexible hydrogel sensor with excellent toughness and good self-healing properties remains a challenge. In this work, we assembled a dual physical-crosslinking (DPC) ionic conductive polyacrylamide/carrageenan double-network (DN) hydrogel. This hydrogel has excellent fracture tensile stress and toughness, and demonstrates rapid self-recovery and self-healing ability due to the unique dual physical-crosslinking structures. Besides, the hydrogel is highly conductive by adding some conductive ions. As a result, the hydrogel-based sensor can stably detect human motions and physiological signals. The work provides novel ideas for the development of flexible sensing devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.