Abstract
AbstractWith toluene soluble fraction of coal tar pitch, polycarbosilane and pyridine borane as raw materials, the modification coal tar pitch was synthesized by a liquid method. The B-Si-doped carbon materials were obtained by carbonization treatment at 800–1,600 °C for 1 h. The effects of carbonization temperatures on the composition, microstructure and oxidation resistance of the B-Si-doped carbon materials were investigated by XRD, SEM and TG-DSC. The results showed that the B-Si-doped carbon materials were composed of B2O3 and carbon. SiC crystal grains appeared when the carbonization temperatures were over 1,200 °C. The higher the carbonization temperatures were, the larger the SiC grain sizes of B-Si-doped carbon materials became. But oxidation rate of larger grain sizes of SiC was slow during oxidation. It was difficult to form a protective glassy film on the surface of the materials rapidly. Therefore, the B-Si-doped carbon materials obtained by carbonization at 1,200 °C showed better oxidation resistance. Oxidation resistance mechanism of B-Si-doped carbon materials was illustrated. The SiO2 produced by the oxidation of SiC and B2O3 formed protective glassy film, which had self-healing and anti-oxidation synergism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.