Abstract

Corrosion-protective surfaces are of the utmost relevance to ensure long-term stability and reliability of metals and alloys by limiting their interactions with corrosive species, such as water and ions. However, their practical applications are often limited either by the inability to repel low surface tension liquids such as oils and alcohols or by poor mechanical durability. Here, a superomniphobic surface is reported that can display very high contact angles for both high and low surface tension liquids as well as for concentrated acids and bases. Such extreme repellency allowed for approximately 20% of the corrosion rate compared to the conventional superhydrophobic corrosion protective coatings. Furthermore, the superomniphobic surface can autonomously repair mechanical damage at an elevated temperature (60 °C) within a short period of time (60 s), and the surface can restore its intrinsic corrosion protection performance. Such superomniphobic surfaces thus offer a wide range of potential applications, including pipelines, with sustainable corrosion protection and rust inhibitors for steel in reinforced concrete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.