Abstract

Abstract This paper presents the experimental study to realize a DNA separation chip based on the self-focusing effect in a micropillar array. The present self-focusing chip redistributes DNA molecules within a specific area of micropillar arrays based on the size- and field-dependent nonlinearity of DNA drift velocity. Compared to conventional electrophoresis chips, the present self-focusing chip reduces a substantial amount of the separation channel length, the influence of sample starting location, and the necessity of time-consuming continuous monitoring process. We focus on the design of DNA self-focusing chips, with identifying the nonlinearity of DNA drift velocity using three different DNA molecules including λ DNA(48.5 kbp), micrococcus DNA(115 kbp), and T4 DNA(169.8 kbp) in microfabricated test chips. It is demonstrated that the present DNA self-focusing chips have potentials not only for the miniaturization of DNA analysis systems, but also for the tunable capability of the target DNA size to be separated, trapped and extracted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.