Abstract

The commercial powdered activated carbon (PAC) has been selectively oxidized by two methods. The two oxidized methods are wet oxidation with ammonium persulfate and thermal treatment after acidification with hydrochloride acid, respectively. The two oxidized PAC were then functionalized with thermoresponsive poly (N-isopropylacrylamide) (PNIPAM) in aqueous solution at ambient temperature. Comparing the two oxidized PAC products and their grafted derivatives, the oxidized PAC modified with thermal treatment after acidification shows larger surface area of 1184m2/g and better adsorption of bisphenol A. Its derivative also exhibits relatively large surface area and adsorption capacity after grafted with PNIPAM. The maximum surface adsorption capacity simulated under Langmuir Models reached 156mg/g. In addition, the grafted PAC products show self-flocculation behaviors with rapid response to temperature because of the thermal phase transition and entanglement behaviors of PNIPAM. The present study provides a new way to obtain carboxyl-rich activated carbon with large surface area and better adsorption capacity. The retrievable grafted PAC with good self-flocculation effect responsive to temperature will have high potential application in water remediation which requires pre-heating and emergency water treatment in the wild.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call