Abstract

Differential evolution (DE) is one of the most powerful and versatile evolutionary algorithms for efficiently solving complex real-world optimization problems in recent years. Since its introduction in 1995, the research focus in DE has mostly been on the variant side with so many new algorithms proposed based on the original DE algorithm. However, each new algorithm is only suitable for certain fitness landscapes, and, therefore, some types of optimization problems cannot be solved efficiently. To tackle this issue, this paper presents a new self-feedback DE algorithm, named the SFDE; its optimal variation strategy is selected by extracting the local fitness landscape characteristics in each generation population and combing the probability distributions of unimodality and multimodality in each local fitness landscape. The proposed algorithm is tested on a suite of 17 benchmark functions, and the experimental results demonstrated its advantages in a high search dimension in that it can ensure that the population moves to a better fitness landscape, then speeds up convergence to the global optimum, and avoids falling into local optima.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.