Abstract

In this study, we demonstrate a self-excited oscillation induced in cholesteric liquid crystalline droplets under a temperature gradient. At equilibrium, a winding Maltese cross pattern with a point defect was observed via polarised microscopy in the droplets dispersed in an isotropic solvent. When the temperature gradient was applied, the pattern was deformed owing to the Marangoni convection induced by the gradient. Here, when both the droplet size and temperature gradient were sufficiently large, the periodic movement of the defect together with the pattern deformation was observed, which demonstrated the self-excited oscillation of the director field. To describe this phenomenon, we theoretically analysed the flow and director fields by using Onsager’s variational principle. This principle enabled the simplified description of the phenomenon; consequently, the time evolution of the director field could be expressed by the phenomenological equations for the two parameters characterising the field. These equations represented the van der Pol equation, which well expressed the mechanism of the self-excited oscillation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.