Abstract
It is well-known that any 4-dimensional hyperkähler metric with two commuting Killing fields may be obtained explicitly, via the Gibbons-Hawking Ansatz, from a harmonic function invariant under a Killing field on • 3. In this paper, we find all selfdual Einstein metrics of nonzero scalar curvature with two commuting Killing fields. They are given explicitly in terms of a local eigenfunction of the Laplacian on the hyperbolic plane. We discuss the relation of this construction to a class of selfdual spaces found by Joyce, and some Einstein-Weyl spaces found by Ward, and then show that certain 'multipole' hyperbolic eigenfunctions yield explicit formulae for the quaternion-kähler quotients of • Pm—1 by an (m — 2)-torus studied by Galicki and Lawson. As a consequence we are able to place the well-known cohomogeneity one metrics, the quaternion-kähler quotients of • P2 (and noncompact analogues), and the more recently studied selfdual Einstein Hermitian metrics in a unified framework, and give new complete examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.