Abstract
In these lectures I review classical aspects of the self-dual Chern-Simons systems which describe charged scalar fields in $2+1$ dimensions coupled to a gauge field whose dynamics is provided by a pure Chern-Simons Lagrangian. These self-dual models have one realization with nonrelativistic dynamics for the scalar fields, and another with relativistic dynamics for the scalars. In each model, the energy density may be minimized by a Bogomol'nyi bound which is saturated by solutions to a set of first-order self-duality equations. In the nonrelativistic case the self-dual potential is quartic, the system possesses a dynamical conformal symmetry, and the self-dual solutions are equivalent to the static zero energy solutions of the equations of motion. The nonrelativistic self-duality equations are integrable and all finite charge solutions may be found. In the relativistic case the self-dual potential is sixth order and the self-dual Lagrangian may be embedded in a model with an extended supersymmetry. The self-dual potential has a rich structure of degenerate classical minima, and the vacuum masses generated by the Chern-Simons Higgs mechanism reflect the self-dual nature of the potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.