Abstract
AbstractPartial geometric designs can be constructed from basic relations of association schemes. An infinite family of partial geometric designs were constructed from the fusion schemes of certain Hamming schemes in work by Nowak et al. (2016). A general method to create partial geometric designs from association schemes is given by Xu (2023). In this paper, we continue the research by Xu (2023). We will first study the properties and characterizations of self‐dual association schemes. Then using the characterizations of self‐dual association schemes and the representation theory (character tables) of commutative association schemes, we obtain characterizations and classifications of self‐dual (symmetric or nonsymmetric) association schemes of rank 4 that produce as many as possible nontrivial partial geometric designs or 2‐designs. In particular, for a primitive self‐dual symmetric association scheme of rank 4, if is a power of 3 and each of , , and induces a partial geometric design, then we will prove that is algebraically isomorphic to a fusion scheme of the Hamming scheme for some odd number .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.