Abstract

Modern services comprise interconnected components, e.g., microservices in a service mesh, that can scale and run on multiple nodes across the network on demand. To process incoming traffic, service components have to be instantiated and traffic assigned to these instances, taking capacities and changing demands into account. This challenge is usually solved with custom approaches designed by experts. While this typically works well for the considered scenario, the models often rely on unrealistic assumptions or on knowledge that is not available in practice (e.g., a priori knowledge).We propose a novel deep reinforcement learning approach that learns how to best coordinate services and is geared towards realistic assumptions. It interacts with the network and relies on available, possibly delayed monitoring information. Rather than defining a complex model or an algorithm how to achieve an objective, our model-free approach adapts to various objectives and traffic patterns. An agent is trained offline without expert knowledge and then applied online with minimal overhead. Compared to a state-of-the-art heuristic, it significantly improves flow throughput and overall network utility on real-world network topologies and traffic traces. It also learns to optimize different objectives, generalizes to scenarios with unseen, stochastic traffic patterns, and scales to large real-world networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.