Abstract

Self-tapping and self-drilling screws are two modalities available for plate fixation. When compared to self-drilling, self-tapping screws have a few drawbacks like screw loosening, thermal osteolysis, equipment dependent, and time-consuming. The aim of this study was to compare the efficacy of self-tapping and self-drilling screws with relation to plate retention and stability in internal fixation of mandibular fractures using 3D finite element analysis (FEA). The objective of this study was to determine the influence of screw placement technique on stress concentration and deformation occurring at the screw-bone interface in self-drilling and self-tapping screws. A 3D computer-aided design modeling system was used to build a trilaminate mandibular bone, self-tapping screw and self-drilling screw, and a 2-holed miniplate with gap that were converted into finite element models using Hypermesh 13.0 software. Material properties and boundary conditions were assigned to these models. Pullout, torque, and torsional forces were applied to evaluate the stress concentration and deformation at the screw-bone interface. The comparison of stress concentration and deformation values between the two types of screws was interpreted using ANSYS software version 14.5. Results of torque test, pullout test, and torsional test showed maximum Von Mises stress, and deformation around the screw-bone interface was higher in self-tapping screw than in self-drilling screw. Within the limitations of the 3D FEA, the findings provided significant evidence to suggest that self-tapping screws have a greater incidence of fatigue when compared to self-drilling screws as there was more stress distribution and deformation at their screw-bone interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call